0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 571 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 87 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 122 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 31 ms)
↳24 CpxRNTS
↳25 FinalProof (⇔, 0 ms)
↳26 BOUNDS(1, n^1)
append(Cons(x, xs), ys) → Cons(x, append(xs, ys))
append(Nil, ys) → ys
goal(x, y) → append(x, y)
append(Cons(x, xs), ys) → Cons(x, append(xs, ys)) [1]
append(Nil, ys) → ys [1]
goal(x, y) → append(x, y) [1]
append(Cons(x, xs), ys) → Cons(x, append(xs, ys)) [1]
append(Nil, ys) → ys [1]
goal(x, y) → append(x, y) [1]
append :: Cons:Nil → Cons:Nil → Cons:Nil Cons :: a → Cons:Nil → Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil → Cons:Nil → Cons:Nil |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
append
goal
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Nil => 0
const => 0
append(z, z') -{ 1 }→ ys :|: z' = ys, ys >= 0, z = 0
append(z, z') -{ 1 }→ 1 + x + append(xs, ys) :|: z = 1 + x + xs, xs >= 0, z' = ys, ys >= 0, x >= 0
goal(z, z') -{ 1 }→ append(x, y) :|: x >= 0, y >= 0, z = x, z' = y
append(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
append(z, z') -{ 1 }→ 1 + x + append(xs, z') :|: z = 1 + x + xs, xs >= 0, z' >= 0, x >= 0
goal(z, z') -{ 1 }→ append(z, z') :|: z >= 0, z' >= 0
{ append } { goal } |
append(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
append(z, z') -{ 1 }→ 1 + x + append(xs, z') :|: z = 1 + x + xs, xs >= 0, z' >= 0, x >= 0
goal(z, z') -{ 1 }→ append(z, z') :|: z >= 0, z' >= 0
append(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
append(z, z') -{ 1 }→ 1 + x + append(xs, z') :|: z = 1 + x + xs, xs >= 0, z' >= 0, x >= 0
goal(z, z') -{ 1 }→ append(z, z') :|: z >= 0, z' >= 0
append: runtime: ?, size: O(n1) [z + z'] |
append(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
append(z, z') -{ 1 }→ 1 + x + append(xs, z') :|: z = 1 + x + xs, xs >= 0, z' >= 0, x >= 0
goal(z, z') -{ 1 }→ append(z, z') :|: z >= 0, z' >= 0
append: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
append(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
append(z, z') -{ 2 + xs }→ 1 + x + s :|: s >= 0, s <= 1 * xs + 1 * z', z = 1 + x + xs, xs >= 0, z' >= 0, x >= 0
goal(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z', z >= 0, z' >= 0
append: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
append(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
append(z, z') -{ 2 + xs }→ 1 + x + s :|: s >= 0, s <= 1 * xs + 1 * z', z = 1 + x + xs, xs >= 0, z' >= 0, x >= 0
goal(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z', z >= 0, z' >= 0
append: runtime: O(n1) [1 + z], size: O(n1) [z + z'] goal: runtime: ?, size: O(n1) [z + z'] |
append(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
append(z, z') -{ 2 + xs }→ 1 + x + s :|: s >= 0, s <= 1 * xs + 1 * z', z = 1 + x + xs, xs >= 0, z' >= 0, x >= 0
goal(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * z', z >= 0, z' >= 0
append: runtime: O(n1) [1 + z], size: O(n1) [z + z'] goal: runtime: O(n1) [2 + z], size: O(n1) [z + z'] |